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Correspondence

Two Partially Filled Cavity-Resonator
Techniques for the Evaluation of Scalar
Permittivity and Permeability of
Ferrites

The two cavity-resonator techniques de-
scribed earlier for measuring pure dielectrics,
one using rod samples in the cylindrical cavity
system,' and the other using slabs in a rectangu-
lar cavity system,? have been extended for mea-
suring magnetic dielectrics such as ferrites. As
there are four parameters that need to be evalu-
ated, i.e., &, 4, tan, 8, and tan,,8; four indepen-
dent measurements, two of the wavelengths in
the partially filled portion, and two of the Q are
needed. These two sets of measurements may
either be obtained by using two different sam-
ples as in Srivastava’s method,? or by using only
one sample and obtaining the second set of mea-
surements at a slightly different frequency (2 to
5 percent difference) and assuming that both p
and ¢ remain unaltered at this frequency. Since
the cavities used in these methods are tunable,
the second alternative, giving the unique ad-
vantage of using only one sample, is available.

THEORY
Evaluation of ¢, and y,

g, and u, are obtained by measuring the two
guide wavelengths in the partially filled portion
by using Feenberg’s method as explained in the
carlier methods®? for the two configurations
mentioned above. The extraction of g, and &,
from these measured parameters are given be-
low.
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1) Coaxial rod in a cylindrical cavity : Max-
well’s equations for this system give!**

B* = B5 - K3 0y
= Bime, — K3 @
and
1
- 2 ), 3
$(x) p Yly
where
1 Jy(x)
lx) = > To(x) @
and
siy) = L LOYm) = Lemp¥o)

Y Jo)Yy(my) — J1(my)Yol»)

In the above equations, m=r,/r;, x=Kry,
and y=K,r,, where r, and r, are the respective
radii of the specimen and the cavity.

B and B, in the above equations refer to the
propagation constants in the partially filled
portion and in the free space, respectively.

Consider the equations that would be ob-
tained for the second set of measurements,
either for the same sample at a different fre-
quency or for a different sample at the same or
different frequency. By suitable manipulation
one obtains

K85 = Ki + (K585 — KD/B,®  (6)
and

(K _ WKs).
T AN

The primed symbols correspond to the second
configuration.

™

+ L. Pincherle, “Electromagneiic waves in metal tubes
filled longitudinally with two dielectrics,” Phys. Rev., vol.
66, pp. 118-130, September 1944.

K,, ¥(K,), K; and Y(K%) are now evaluated
from the measured f and f’. Now, with the use
of (6) and (7) one obtains an expression in K or
K alone that can be solved numerically and,
hence, y, and ¢, can subsequently be evaluated.

2) Slab in the rectangular cavity: the slab
used can either be along the center or the side-
wall of the cavity.2 However, all the arguments
and relations given for the previous configura-
tion remain valid here also, except that the
characteristic equations, (3)~5), become differ-
ent.

For the centrally loaded configuration one
obtains

1
¢ (K1) = 2d/t- i i1 (Kod), (8)
where
¢ = cot (K 1/2)/(K1/2 ©®
and
¥, = tan (K, d)/(K,d), (10)

and where ¢ is the thickness of the sample and d
is the distance of the side of the sample to its
nearest cavity sidewall.

For the side-loaded configuration, the cor-
responding characteristic equations are

1
Ok ) = — ; ¥, (K1), 1n

where

5K 1) = tan K /Kt (12)

and

V2(K,f) = tan Ky(a — 1)/K,t, (13)
and where ¢ is the sample thickness and a the
broad dimension of the waveguide used in the

cavity resonator.
The efforts involved in computing the
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Fig. 1. Theoretical chart relating g,, ¢, with 2,, 4 for centrally loaded configuration ( + =0.02 inch) 1n the

rectangular cavity. (Numbers on the top of inner squares are ¢, and on bottom g,.)

parameters may be obviated by plotting theoret-
ical tables for all these configurations for the
particular frequencies, such that from the experi-
mental values of the wavelengths, the requisite
parameters ¢,, y, may be directly read off. A
typical chart for the centrally loaded rectangular
configuration for the frequencies 9.1 and 9.3

kHz, for using a single sample of thickness
0.02 inch is given in Fig. 1. Many such charts for
various thicknesses and frequencies may con-
veniently be prepared.

The limitations on the radius or the thick-
ness of the samples discussed elsewhere!? re-
main valid here, and it is possible to use fairly

1) cylindrical cavity system

thick samples only in the centrally filled rec-
tangular-cavity configuration,? such that K,
becomes imaginary. For imaginary K, in this
configuration, however, the procedure remains
unaltered, except that K, is replaced by jK,,
and v, by tanh (K,d)/(K,d) in the relevant
equations.

1 1 BSn*FiKSur [per Fotan, 5 + tan,, 8{pueFor, + 2K (K yr)J oK)} (14
2 O 2LoA B, P ’
2) centrally loaded rectangular cavity
K2u,t(A,)? K32 2 K2 2d
AT K a1+ Sk argt = 2 ay, )+ tan, 6§61+ Koy ) + 2y 6,
1 1 _ 4B6LoA1 I mt u et . (15)
Q2 Q1 P1 »
3) side-loaded rectangular cavity system
LU K323/ Lo) [t B8 tan, S(1 — ¢, + K3t2¢3) + tan,, 6{G,(1 + K312¢2) + G,é,)] (16)
0 0 P,
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where
2 2 2
Fo = {J5(Kry) + Ji(Kqry) — FL(KNE)JO(KNH) (17
1t
G, = K2+ 2 (18)
G, =Ki—-p3 (19
272 22212 | f 2 2 2 2K, (
P = 4K{J3(K 1)) + 721 FiK3 | (Fo — Ji(Kr )} { Koy, — K1} +r—J1(K1r1)J0(K1r1)L1 - i} (20)
1
Fy = Jo(Kyr)Y{(Kymry) — Yo(Kor W (Komry) @1
K2 did + ¢t
P= K+ 2 =k + KD+ K330 9 @)
P, = {Kint + (a — K3} — (K3 — KT) + d33(KIKD{p,t + plla — 1)}, (23)

Evaluation of tan, é and tan,, &

tan, & and tan,, é are evaluated from mea-
surements of Q for the two configurations. The
procedure for evaluating tan, é and tan,, é from
these Q values is exactly the same as in the earlier
techniques,!-? except that the resulting equa-
tions are a lot more complex and tedious to
compute.

However, by choosing the total cavity length
to be at least four half wavelengths, and if the
Q of the cavity drops to at least 2/3 of its value
by inserting the sample by half a wavelength,
one may take certain approximations? which
simplify the expressions very considerably and
mtroduce an error of the order of 2 to 4 percent
in the evaluation of tan, § and tan,, . These
expressions are given below. If Q, is the loaded
Q for zero insertion, and @, the loaded @ for an
insertion by half a wavelength, one obtains

CONCLUSIONS

These techniques offer the possibility of very
quick and accurate evaluation of permittivity
and permeabulity of a broad range of specimen
dimensions, both in the form of rods and slabs
if the suitable charts are prepared. In addition,
these are the only available techniques based on
accurate theoretical solutions, in which one
may evaluate all four parameters using only a
single specimen, resulting in an enormous con-
venience.

J. K. SiNHA
Amphenol RF Division
Danbury, Conn. 06810

Design of TEM Equal Stub
Admittance Filters

Filters formed in TEM transmission lines
by short-circuited stubs that are 4/4 in length at
the design center frequency and separated by
the same length have useful bandpass properties
in wideband (typically 10 percent to one-octave
bandwidth) applications.

The usual design of a filter of this typeis fora
maximally flat or Chebyshev response, which
requires a tapering of the characteristic admit-

Manuscript recerved January 4, 1967; revised May 21,
1967.

tances of the stubs [1]. The procedure described
here, which may be used successfully in many
applications, requires that the stub admittances
all be equal. In those applications where maxi-
mum flatness or equal ripple are not required,
this 1s a simple, inexpensive, and easily designed
structure.

The theoretical approach described here is
similar to that of Mumford [1], in which we
first state the form of our filter and then analyze
on the basis of the exact filter model. This ap-
proach very quickly gave us the insertion loss
characteristics we were seeking.

Another approach to TEM filter synthesis is
to use the Richards’ transformation and the
Kuroda identities [2]. Various “optimum”
structures in the Butterworth or Chebyshev
sense have been analyzed wherein a network is
synthesized to approximate a desired function.
This approach has not been necessary in this
case.

The analytical expressions for insertion loss
are derived for any number of resonators. The
assumption of dissipationless filters was made;
dissipation is negligible for the relatively wide-
band filters considered here. Curves are avaii-
able for one to eight resonators, which enables
a systematic design. Bandwidth, insertion loss,
and characteristic admittance may be rigorously
determined in specific applications. Examples of
this are given. A bandpass filter is tested and the
results are shown to agree with the predictions
of the theory.

Using well-known techniques, a model is
analyzed for the TEM structures considered.
Figure 1 shows a form suitable for the purposes
of our analysis. The resonators are considered
lossless. The mathematical derivation is briefly
outlined here.

The filter is considered lossless, linear, pas-
sive, reciprocal, and symmetrical. The insertion
loss is given by

By — Cy)?
L:lO]og[l—(L_")],

4

where By and Cy are determined from
A B _ |4~y By
C D| | Cy Dy

This ABCD matrix is for a single (line-stub-
line) section. This is then multiplied N times
using techniques described elsewhere [3].

The insertion loss is given by

K2q2
L =10log<t + ——-
41— g%

Pﬁ,[Zq <1 ; ?)]} (n

1) K=characteristic admittance of stub
resonator normalized to line ad-
mittance,

2) N=number of stubs,

3) g=cos O=cos (2rd/A) where d is the

stub length, and

4) Py =Chebyshev polynomial of the second
kind.

where

This expression has been plotted for N=1
through 8 with K as a parameter and ¢ as the
abscissa.! Curves for N=3, 4, and 7 are shown
in Figs. 2, 3, and 4, respectively.

As far as these graphs are concerned, we
may immediately state the following. We have
g=cos 0, so q varies as —1<g<1 as § or 4
varies. At q=0, the insertion loss is zero for all
N and K. At g= + 1, the insertion loss is infinity
for all N and K. In addition, P is an even func-
tion of g, so that it is only necessary to plot the
region 0<g<1 due to symmetry. All values of
A of interest are mapped in this region.

It is seen from (1) that, for N=1 and N=2,
the quarter-wave shorted-stub filter is identical
to the maximally flat filter of Mumford [1].

The next section gives design examples and
insertion loss curves. With the use of (1), we may
easily derive approximate equations for specific
regtons of the insertion loss characteristic. These
are useful when a curve is not available. We do
not reproduce these approximations, since there
are so many depending on the region of interest.

As a design example let it be required to have
a bandpass TEM filter with a minimum 3-dB
bandwidth of 630 MHz or 70 percent, a center
frequency of 900 MHz, and a minimum rejection
of 20 dB at 900+ 500 MHz. Each of our stubs
must be 4/4 in length or 8.33 cm at 900 MHz.
The 70-percent bandwidth corresponds to a
3-dB frequency of ¢=0.525 and a 20-dB fre-
quency of ¢=0.766. Examination of the curves
show that a filter of N=4 and K=1.4(35.7-ohm
stubs) will do the job. The ripple will be 0.3 dB
at one point and this will be adequate for many
applications.

! Complete graphs are available from ADI Auxillary
Publications Program.



